
Making Pictures With GNU PIC

Eric S. Raymond

〈esr@snark.thyrsus.com〉

ABSTRACT

The pic language is a troff extension that makes it easy to create and alter box-and-
arrow diagrams of the kind frequently used in technical papers and textbooks. This paper
is both an introduction to and reference for gpic(1), the implementation distributed by the
Free Software Foundation for use with groff (1). It also catalogs other implementations
and explains the differences among them.

1. Introduction to PIC

1.1. Why PIC?

The pic language provides an easy way to write procedural box-and-arrow diagrams to be included in
troff documents. The language is sufficiently flexible to be quite useful for state charts, Petri-net diagrams,
flow charts, simple circuit schematics, jumper layouts, and other kinds of illustration involving repetitive
uses of simple geometric forms and splines. Because these descriptions are procedural and object-based,
they are both compact and easy to modify.

The phrase “GNU pic” may refer to either of two pic implementations distributed by the Free Soft-
ware Foundation and intended to accept the same input language. The gpic(1) implementation is for use
with the groff (1) implementation of troff. The pic2plot(1) implementation runs standalone and is part of
the plotutils package. Because both implementations are widely available in source form for free, they are
good bets for writing very portable documentation.

1.2. PIC Versions

The original 1984 pre-ditroff (1) version of pic is long obsolete. The rewritten 1991 version is still
available as part of the Documenter’s Work Bench module of System V.

Where differences between Documenter’s Work Bench (1991) pic and GNU pic need to be de-
scribed, original pic is referred to as “DWB pic”. Details on the history of the program are given at the end
of this document.

The pic2plot program does not require the rest of the groff (1) toolchain to render graphics. It can
display pic diagrams in an X window, or generate output plots in a large number of other formats. These
formats include: PNG, PBM, PGM, PPM, GIF, SVG, Adobe Illustrator format, idraw-editable Postscript,
the WebCGM format for Web-based vector graphics, the format used by the xfig drawing editor, the
Hewlett-Packard PCL 5 printer language, the Hewlett-Packard Graphics Language (by default, HP-GL/2),
the ReGIS (remote graphics instruction set) format developed by DEC, Tektronix format, and device-inde-
pendent GNU graphics metafile format.

In this document, gpic(1) and pic2plot(1) extensions are marked as such.

2. Invoking PIC

Every pic description is a little program describing drawing actions. The [gtn]roff-dependent ver-
sions compile the program by pic(1) into gtroff (1) macros; the pic2plot(1) implementation uses a plotting
library to draw the picture directly. Programs that process or display gtroff (1) output need not know or care

-2-

that parts of the image began life as pic descriptions.

The pic(1) program tries to translate anything between .PS and .PE markers, and passes through ev-
erything else. The normal definitions of .PS and .PE in the ms macro package and elsewhere have also the
side-effect of centering the pic output on the page.

2.1. PIC Error Messages

If you make a pic syntax error, gpic(1) issues an error message in the standard gcc(1)-like syntax. A
typical error message looks like this

pic:pic.ms:<nnn>: parse error before ‘<token>’
pic:pic.ms:<nnn>: giving up on this picture

where 〈nnn〉 is a line number, and 〈token〉 is a token near (usually just after) the error location.

3. Basic PIC Concepts

Pictures are described procedurally, as collections of objects connected by motions. Normally, pic
tries to string together objects left-to-right in the sequence they are described, joining them at visually natu-
ral points. Here is an example illustrating the flow of data in pic processing:

document gpic(1)
gtbl(1) or geqn(1)

(optional)
gtroff (1) PostScript

Figure 3-1: Flow of pic data

This was produced from the following pic program:

.PS
ellipse "document";
arrow;
box width 0.6 "\fIgpic\/\fP(1)"
arrow;
box width 1.1 "\fIgtbl\/\fP(1) or \fIgeqn\/\fP(1)" "(optional)" dashed;
arrow;
box width 0.6 "\fIgtroff\/\fP(1)";
arrow;
ellipse "PostScript"
.PE

This little program illustrates several pic basics. Firstly, we see how to inv oke three object types; ellipses,
arrows, and boxes. We see how to declare text lines to go within an object (and that text can have font
changes in it). We see how to change the line style of an object from solid to dashed. And we see that a
box can be made wider than its default size to accommodate more text (we’ll discuss this facility in detail in
the next section).

We also get to see pic’s simple syntax. Statements are ended by newlines or semicolons. String
quotes are required around all text arguments, whether or not they contain spaces. In general, the order of
command arguments and modifiers like “width 1.2” or “dashed” doesn’t matter, except that the order of text
arguments is significant.

Here are all but one of the basic pic objects at their default sizes:

-3-

box
line arrow

circle ellipse

arc

Figure 3-2: Basic pic objects

The missing simple object type is a spline. There is also a way to collect objects into block compos-

ites which allows you to treat the whole group as a single object (resembling a box) for many purposes.
We’ll describe both of these later on.

The box, ellipse, circle, and block composite objects are closed; lines, arrows, arcs and splines are
open. This distinction is often important in explaining command modifiers.

Figure 3-2 was produced by the following pic program, which introduces some more basic concepts:

.PS
box "box";
move;
line "line" "";
move;
arrow "arrow" "";
move;
circle "circle";
move;
ellipse "ellipse";
move;
arc; down; move; "arc"
.PE

The first thing to notice is the move command, which moves a default distance (1/2 inch) in the cur-
rent movement direction.

Secondly, see how we can also decorate lines and arrows with text. The line and arrow commands
each take two arguments here, specifying text to go above and below the object. If you wonder why one ar-
gument would not do, contemplate the output of arrow "ow!":

ow!

Figure 3-3: Text centered on an arrow

When a command takes one text string, pic tries to place it at the object’s geometric center. As you
add more strings, pic treats them as a vertical block to be centered. The program

line "1";
line "1" "2";
line "1" "2" "3";
line "1" "2" "3" "4";
line "1" "2" "3" "4" "5";

for example, gives you this:

-4-

1
1
2

1
2
3

1
2
3
4

1
2
3
4
5

Figure 3-4: Effects of multiple text arguments

The last line of Figure 3-2’s program, ‘arc; down; move; "arc"’, describing the captioned arc, intro-
duces several new ideas. Firstly, we see how to change the direction in which objects are joined. Had we
written arc; move; "arc", omitting down the caption would have been joined to the top of the arc, like
this:

arc

Figure 3-5: Result of arc; move;

This is because drawing an arc changes the default direction to the one its exit end points at. To rein-
force this point, consider:

arc

Figure 3-6: Result of arc cw; move;

All we’ve done differently here is specify “cw” for a clockwise arc (“ccw” specifies counter-clock-
wise direction). Observe how it changes the default direction to down, rather than up.

Another good way to see this via with the following program:

line; arc; arc cw; line

which yields:

Figure 3-7: Result of line; arc; arc cw; line

Notice that we did not have to specify “up” for the second arc to be joined to the end of the first.

Finally, observe that a string, alone, is treated as text to be surrounded by an invisible box of a size ei-
ther specified by width and height attributes or by the defaults textwid and textht. Both are initially zero
(because we don’t know the default font size).

4. Sizes and Spacing

Sizes are specified in inches. If you don’t like inches, it’s possible to set a global style variable scale
that changes the unit. Setting scale = 2.54 effectively changes the internal unit to centimeters (all other size
variable values are scaled correspondingly).

-5-

4.1. Default Sizes of Objects

Here are the default sizes for pic objects:

Object Default Size

box 0.75" wide by 0.5" high
circle 0.5" diameter
ellipse 0.75" wide by 0.5" high
arc 0.5" radius
line 0.5" long
arrow 0.5" long

The simplest way to think about these defaults is that they make the other basic objects fit snugly into
a default-sized box.

pic2plot(1) does not necessarily emit a physical inch for each virtual inch in its drawing coordinate
system. Instead, it draws on a canvas 8 virtual inches by 8 virtual inches wide. If its output page size is
“letter”, these virtual inches will map to real ones. Specifying a different page size (such as, say, “a4”) will
scale virtual inches so they are output as one eighth of the page width. Also, pic2plot(1) centers all images
by default, though the −n option can be used to prevent this.

4.2. Objects Do Not Stretch!

Te xt is rendered in the current font with normal troff line spacing. Boxes, circles, and ellipses do not

automatically resize to fit enclosed text. Thus, if you say box "this text far too long for a default box"
you’ll get this:

this text is far too long for a default box

Figure 4-1: Boxes do not automatically resize

which is probably not the effect you want.

4.3. Resizing Boxes

To change the box size, you can specify a box width with the “width” modifier:

this text is far too long for a default box

Figure 4-2: Result of box width 3

This modifier takes a dimension in inches. There is also a “height” modifier that changes a box’s
height. The width keyword may be abbreviated to wid; the height keyword to ht.

4.4. Resizing Other Object Types

To change the size of a circle, give it a rad[ius] or diam[eter] modifier; this changes the radius or di-
ameter of the circle, according to the numeric argument that follows.

-6-

0.1

0.2 0.3

Figure 4-3: Circles with increasing radii

The move command can also take a dimension, which just tells it how many inches to move in the
current direction.

Ellipses are sized to fit in the rectangular box defined by their axes, and can be resized with width
and height like boxes.

You can also change the radius of curvature of an arc with rad[ius] (which specifies the radius of the
circle of which the arc is a segment). Larger values yield flatter arcs.

0.1 0.2 0.3

Figure 4-4: arc rad with increasing radii

Observe that because an arc is defined as a quarter circle, increasing the radius also increases the size
of the arc’s bounding box.

4.5. The ‘same’ Keyword

In place of a dimension specification, you can use the keyword same. This gives the object the same
size as the previous one of its type. As an example, the program

.PS
box; box wid 1 ht 1; box same; box
.PE

gives you

Figure 4-5: The same keyword

5. Generalized Lines and Splines

5.1. Diagonal Lines

It is possible to specify diagonal lines or arrows by adding multiple up, down, left, and right modi-
fiers to the line object. Any of these can have a multiplier. To understand the effects, think of the drawing
area as being gridded with standard-sized boxes.

-7-

arrow up left 0.5 arrow up left 1 arrow up left 1.5 arrow up left 2

Figure 5-1: Diagonal arrows (dotted boxes show the implied 0.5-inch grid)

5.2. Multi-Segment Line Objects

A “line” or “arrow” object may actually be a path consisting of any number of segments of varying
lengths and directions. To describe a path, connect several line or arrow commands with the keyword then.

Figure 5-2: line right 1 then down .5 left 1 then right 1

If a path starts with then, the first segment is assumed to be into the current direction, using the de-
fault length.

5.3. Spline Objects

If you start a path with the spline keyword, the path vertices are treated as control points for a spline
curve fit.

The spline curve...

1 2

3 4

...with tangents displayed

Figure 5-3: spline right 1 then down .5 left 1 then right 1

You can describe many natural-looking but irregular curves this way. For example:

spline right then up then left then down ->; spline left then up right then down right ->;

Figure 5-4: Two more spline examples

Note the arrow decorations. Arrowheads can be applied naturally to any path-based object, line or spline.
We’ll see how in the next section.

6. Decorating Objects

6.1. Text Special Effects

All pic implementations support the following font-styling escapes within text objects:

\fR, \f1
Set Roman style (the default)

-8-

\fI, \f2
Set Italic style

\fB, \f3
Set Bold style

\fP
Revert to previous style; only works one level deep, does not stack.

In the pic implementations that are preprocessors for a toolchain that include [gtn]roff, text objects
may also contain [gtn]roff vertical- and horizontal-motion escapes such as \h or \v. Troff special glyphs are
also available. All \-escapes will be passed through to the postprocessing stage and have their normal ef-
fects. The base font family is set by the [gtn]roff environment at the time the picture is rendered.

pic2plot replaces [gtn]roff horizontal- and vertical-motion escapes with \-escapes of its own. Troff
special glyphs are not available, but in most back ends Latin-1 special characters and a square-root radical
will be. See the pic2plot documentation for full details.

6.2. Dashed Objects

We’v e already seen that the modifier dashed can change the line style of an object from solid to
dashed. GNU gpic permits you to dot or dash ellipses, circles, and arcs (and splines in TEX mode only);
some versions of DWB may only permit dashing of lines and boxes. It’s possible to change the dash inter-
val by specifying a number after the modifier.

default 0.05 0.1 0.15 0.2

Figure 6-1: Dashed objects

6.3. Dotted Objects

Another available qualifier is dotted. GNU gpic permits you to dot or dash ellipses, circles, and arcs
(and splines in TEX mode only); some versions of DWB may only permit dashing of lines and boxes. It too
can be suffixed with a number to specify the interval between dots:

default 0.05 0.1 0.15 0.2

Figure 6-2: Dotted objects

6.4. Rounding Box Corners

It is also possible, in GNU gpic only, to modify a box so it has rounded corners:

rad 0.05 rad 0.1 rad 0.15 rad 0.2 rad 0.25

Figure 6-3: box rad with increasing radius values

Radius values higher than half the minimum box dimension are silently truncated to that value.

-9-

6.5. Slanted Boxes

GNU gpic supports slanted boxes:

xslanted 0.1 yslanted -0.1
xslanted -0.2
yslanted 0.1

Figure 6-4: Various slanted boxes.

The xslanted and yslanted attributes specify the x and y offset, respectively, of the box’s upper right
corner from its default position.

6.6. Arrowheads

Lines and arcs can be decorated as well. Any line or arc (and any spline as well) can be decorated
with arrowheads by adding one or more as modifiers:

Figure 6-5: Double-headed line made with line <- ->

In fact, the arrow command is just shorthand for line ->. And there is a double-head modifier <->,
so the figure above could have been made with line <->.

Arrowheads have a width attribute, the distance across the rear; and a height attribute, the length of
the arrowhead along the shaft.

Arrowhead style is controlled by the style variable arrowhead. The DWB and GNU versions inter-
pret it differently. DWB defaults to open arrowheads and an arrowhead value of 2; the Kernighan paper
says a value of 7 makes solid arrowheads. GNU gpic defaults to solid arrowheads and an arrowhead value
of 1; a value of 0 produces open arrowheads. Note that solid arrowheads are always filled with the current
outline color.

6.7. Line Thickness

It’s also possible to change the line thickness of an object (this is a GNU extension, DWB pic doesn’t
support it). The default thickness of the lines used to draw objects is controlled by the linethick variable.
This gives the thickness of lines in points. A neg ative value means use the default thickness: in TEX output
mode, this means use a thickness of 8 milliinches; in TEX output mode with the -c option, this means use
the line thickness specified by .ps lines; in troff output mode, this means use a thickness proportional to the
pointsize. A zero value means draw the thinnest possible line supported by the output device. Initially it
has a value of -1. There is also a thickness attribute (which can be abbreviated to thick). For example, cir-
cle thickness 1.5 would draw a circle using a line with a thickness of 1.5 points. The thickness of lines is
not affected by the value of the scale variable, nor by any width or height given in the .PS line.

6.8. Invisible Objects

The modifier invis[ible] makes an object entirely invisible. This used to be useful for positioning text
in an invisible object that is properly joined to neighboring ones. Newer DWB versions and GNU pic treat
stand-alone text in exactly this way.

6.9. Filled Objects

It is possible to fill boxes, circles, and ellipses. The modifier fill[ed] accomplishes this. You can suf-
fix it with a fill value; the default is given by the style variable fillval.

DWB pic and gpic have opposite conventions for fill values and different defaults. DWB fillval de-
faults to 0.3 and smaller values are darker; GNU fillval uses 0 for white and 1 for black.

-10-

Figure 6-6: circle fill; move; circle fill 0.4; move; circle fill 0.9;

GNU gpic makes some additional guarantees. A fill value greater than 1 can also be used: this means
fill with the shade of gray that is currently being used for text and lines. Normally this is black, but output
devices may provide a mechanism for changing this. The invisible attribute does not affect the filling of ob-
jects. Any text associated with a filled object is added after the object has been filled, so that the text is not
obscured by the filling.

The closed-object modifier solid is equivalent to fill with the darkest fill value (DWB pic had this ca-
pability but mentioned it only in a reference section).

6.10. Colored Objects

As a GNU extension, three additional modifiers are available to specify colored objects. outline sets
the color of the outline, shaded the fill color, and color sets both. All three keywords expect a suffix speci-
fying the color. Example:

Figure 6-7: box color "yellow"; arrow color "cyan"; circle shaded "green" outline "black";

Alternative spellings are colour, colored, coloured, and outlined.

Predefined color names for [gtn]roff -based pic implementations are defined in the device macro files,
for example ps.tmac; additional colors can be defined with the .defcolor request (see the manual page of
GNU troff (1) for more details). Currently, color support is not available at all in TEX mode.

The pic2plot(1) carries with its own set of color names, essentially those recognized by the X win-
dow system with “grey” accepted as a variant of “gray”.

pic assumes that at the beginning of a picture both glyph and fill color are set to the default value.

7. More About Text Placement

By default, text is centered at the geometric center of the object it is associated with. The modifier
ljust causes the left end to be at the specified point (which means that the text lies to the right of the speci-
fied place!), the modifier rjust puts the right end at the place. The modifiers above and below center the
text one half line space in the given direction.

Te xt attributes can be combined:

ljust text rjust text
ljust above

rjust below

Figure 7-1: Text attributes

What actually happens is that n text strings are centered in a box that is textwid wide by textht high.
Both these variables are initially zero (that is pic’s way of not making assumptions about [tg]roff (1)’s de-
fault point size).

-11-

In GNU gpic, objects can have an aligned attribute. This only works if the postprocessor is grops or
gropdf. Any text associated with an object having the aligned attribute is rotated about the center of the
object so that it is aligned in the direction from the start point to the end point of the object. Note that this
attribute has no effect for objects whose start and end points are coincident.

8. More About Direction Changes

We’v e already seen how to change the direction in which objects are composed from rightwards to
downwards. Here are some more illustrative examples:

right; box; arrow; circle; arrow; ellipse

left; box; arrow; circle; arrow; ellipse

Figure 8-1: Effects of different motion directions (right and left)

down; box; arrow; circle; arrow; ellipse; up; box; arrow; circle; arrow; ellipse;

Figure 8-2: Effects of different motion directions (up and down)

Something that may appear surprising happens if you change directions in the obvious way:

-12-

Figure 8-3: box; arrow; circle; down; arrow; ellipse

You might have expected that program to yield this:

Figure 8-4: More intuitive?

But, in fact, to get Figure 8.3 you have to do this:

.PS
box;
arrow;
circle;
move to last circle .s;
down;
arrow;
ellipse
.PE

Why is this? Because the exit point for the current direction is already set when you draw the object. The
second arrow in Figure 8.2 dropped downwards from the circle’s attachment point for an object to be joined
to the right.

The meaning of the command move to last circle .s should be obvious. In order to see how it gener-
alizes, we’ll need to go into detail on two important topics; locations and object names.

9. Naming Objects

The most natural way to name locations in pic is relative to objects. In order to do this, you have to
be able to name objects. The pic language has rich facilities for this that try to emulate the syntax of Eng-
lish.

9.1. Naming Objects By Order Of Drawing

The simplest (and generally the most useful) way to name an object is with a last clause. It needs to
be followed by an object type name; box, circle, ellipse, line, arrow, spline, "", or [] (the last type refers
to a composite object which we’ll discuss later). So, for example, the last circle clause in the program at-
tached to Figure 9.1.3 refers to the last circle drawn.

-13-

More generally, objects of a given type are implicitly numbered (starting from 1). You can refer to
(say) the third ellipse in the current picture with 3rd ellipse, or to the first box as 1st box, or to the fifth text
string (which isn’t an attribute to another object) as 5th "".

Objects are also numbered backwards by type from the last one. You can say 2nd last box to get the
second-to-last box, or 3rd last ellipse to get the third-to-last ellipse.

In places where nth is allowed, ‘expr’th is also allowed. Note that ’th is a single token: no space is
allowed between the ’ and the th. For example,

for i = 1 to 4 do {
line from ‘i’th box.nw to ‘i+1’th box.se

}

9.2. Naming Objects With Labels

You can also specify an object by referring to a label. A label is a word (which must begin with a
capital letter) followed by a colon; you declare it by placing it immediately before the object drawing com-
mand. For example, the program

.PS
A: box "first" "object"
move;
B: ellipse "second" "object"
move;
arrow right at A .r;
.PE

declares labels A and B for its first and second objects. Here’s what that looks like:

first
object

second
object

Figure 9-1: Example of label use

The at statement in the fourth line uses the label A (the behavior of at is explained in the next section).
We’ll see later on that labels are most useful for referring to block composite objects.

Labels are not constants but variables (you can view colon as a sort of assignment). You can say
something like A: A + (1,0); and the effect is to reassign the label A to designate a position one inch to the
right of its old value.

10. Describing locations

The location of points can be described in many different ways. All these forms are interchangeable
as for as the pic language syntax is concerned; where you can use one, any of the others that would make
semantic sense are allowed.

The special label Here always refers to the current position.

10.1. Absolute Coordinates

The simplest is absolute coordinates in inches; pic uses a Cartesian system with (0,0) at the lower left
corner of the virtual drawing surface for each picture (that is, X increases to the right and Y increases up-
wards). An absolute location may always be written in the conventional form as two comma-separated
numbers surrounded by parentheses (and this is recommended for clarity). In contexts where it creates no
ambiguity, the pair of X and Y coordinates suffices without parentheses.

-14-

It is a good idea to avoid absolute coordinates, however. They tend to make picture descriptions diffi-
cult to understand and modify. Instead, there are quite a number of ways to specify locations relative to pic
objects and previous locations.

Another possibility of surprise is the fact that pic crops the picture to the smallest bounding box be-
fore writing it out. For example, if you have a picture consisting of a small box with its lower left corner at
(2,2) and another small box with its upper right corner at (5,5), the width and height of the image are both
3 units and not 5. To get the origin at (0,0) included, simply add an invisible object to the picture, position-
ing the object’s left corner at (0,0).

10.2. Locations Relative to Objects

The symbol Here always refers to the position of the last object drawn or the destination of the last
move.

Alone and unqualified, a last circle or any other way of specifying a closed-object or arc location
refers as a position to the geometric center of the object. Unqualified, the name of a line or spline object
refers to the position of the object start.

Also, pic objects have quite a few named locations associated with them. One of these is the object
center, which can be indicated (redundantly) with the suffix .center (or just .c). Thus, last circle .center is
equivalent to last circle.

10.2.1. Locations Relative to Closed Objects

Every closed object (box, circle, ellipse, or block composite) also has eight compass points associ-
ated with it;

.c

.n .ne

.e

.se.s.sw

.w

.nw

.c

.n
.ne

.e

.se
.s

.sw

.w

.nw

.c

.n
.ne

.e

.se
.s

.sw

.w

.nw

Figure 10-1: Compass points

these are the locations where eight compass rays from the geometric center would intersect the figure. So
when we say last circle .s we are referring to the south compass point of the last circle drawn. The expla-
nation of Figure 8-3’s program is now complete.

(In case you dislike compass points, the names .top, .bottom, .left and .right are synonyms for .n, .s,
.e, and .w respectively; they can even be abbreviated to .t, .b, .l and .r).

The names center, top, bottom, left, right, north, south, east, and west can also be used (without
the leading dot) in a prefix form marked by of; thus, center of last circle and top of 2nd last ellipse are
both valid object references. Finally, the names left and right can be prefixed with upper and lower which
both have the obvious meaning.

Arc objects also have compass points; they are the compass points of the implied circle.

Non-closed objects (line, arrow, or spline) have compass points too, but the locations of them are
completely arbitrary. In particular, different pic implementations return different locations.

10.2.2. Locations Relative to Open Objects

Every open object (line, arrow, arc, or spline) has three named points: .start, .center (or .c), and .end.
They can also be used without leading dots in the of prefix form. The center of an arc is the center of its
circle, but the center of a line, path, or spline is halfway between its endpoints.

-15-

.center

.start

.end

.center

.start

.end

.center

.start

.end

.center

.start

.end

Figure 10-2: Special points on open objects

10.3. Ways of Composing Positions

Once you have two positions to work with, there are several ways to combine them to specify new
positions.

10.3.1. Vector Sums and Displacements

Positions may be added or subtracted to yield a new position (to be more precise, you can only add a
position and an expression pair; the latter must be on the right side of the addition or subtraction sign). The
result is the conventional vector sum or difference of coordinates. For example, last box .ne + (0.1, 0) is a
valid position. This example illustrates a common use, to define a position slightly offset from a named one
(say, for captioning purposes).

10.3.2. Interpolation Between Positions

A position may be interpolated between any two positions. The syntax is ‘fraction of the way be-
tween position1 and position2’. For example, you can say 1/3 of the way between Here and last ellipse
.ne. The fraction may be in numerator/denominator form or may be an ordinary number (values are not re-
stricted to [0,1]). As an alternative to this verbose syntax, you can say ‘fraction <position1 , position2>’;
thus, the example could also be written as 1/3 <Here, last ellipse>.

P

Figure 10-3: P: 1/3 of the way between last arrow .start and last arrow .end

This facility can be used, for example, to draw double connections.

yin yang

Figure 10-4: Doubled arrows

You can get Figure 10-4 from the following program:

-16-

.PS
A: box "yin"; move;
B: box "yang";
arrow right at 1/4 <A.e,A.ne>;
arrow left at 1/4 <B.w,B.sw>;
.PE

Note the use of the short form for interpolating points.

10.3.3. Projections of Points

Given two positions p and q, the position (p, q) has the X coordinate of p and the Y coordinate of q.
This can be helpful in placing an object at one of the corners of the virtual box defined by two other ob-
jects.

(B,A) is here

B(A,B) is here

A

Figure 10-5: Using (x, y) composition

10.4. Using Locations

There are four ways to use locations; at, from, to, and with. All four are object modifiers; that is,
you use them as suffixes to a drawing command.

The at modifier says to draw a closed object or arc with its center at the following location, or to
draw a line/spline/arrow starting at the following location.

The to modifier can be used alone to specify a move destination. The from modifier can be used
alone in the same way as at.

The from and to modifiers can be used with a line or arc command to specify start and end points of
the object. In conjunction with named locations, this offers a very flexible mechanism for connecting ob-
jects. For example, the following program

.PS
box "from"
move 0.75;
ellipse "to"
arc cw from 1/3 of the way \

between last box .n and last box .ne to last ellipse .n;
.PE

yields:

-17-

from to

Figure 10-6: A tricky connection specified with English-like syntax

The with modifier allows you to identify a named attachment point of an object (or a position within
the object) with another point. This is very useful for connecting objects in a natural way. For an example,
consider these two programs:

box wid 0.5 ht 0.5; box wid 0.75 ht 0.75
box wid 0.5 ht 0.5;

box wid 0.75 ht 0.75 with .sw at last box .se;

Figure 10-7: Using the with modifier for attachments

10.5. The ‘chop’ Modifier

When drawing lines between circles that don’t intersect them at a compass point, it is useful to be
able to shorten a line by the radius of the circle at either or both ends. Consider the following program:

.PS
circle "x"
circle "y" at 1st circle - (0.4, 0.6)
circle "z" at 1st circle + (0.4, -0.6)
arrow from 1st circle to 2nd circle chop
arrow from 2nd circle to 3rd circle chop
arrow from 3rd circle to 1st circle chop
.PE

It yields the following:

x

y z

Figure 10-8: The chop modifier

-18-

Notice that the chop attribute moves arrowheads rather than stepping on them. By default, the chop modi-
fier shortens both ends of the line by circlerad. By suffixing it with a number you can change the amount
of chopping.

If you say line . . . chop r1 chop r2 with r1 and r2 both numbers, you can vary the amount of chop-
ping at both ends. You can use this in combination with trigonometric functions to write code that deals
with more complex intersections.

11. Object Groups

There are two different ways to group objects in pic; brace grouping and block composites.

11.1. Brace Grouping

The simpler method is simply to group a set of objects within curly bracket or brace characters. On
exit from this grouping, the current position and direction are restored to their value when the opening
brace was encountered.

11.2. Block Composites

A block composite object is created a series of commands enclosed by square brackets. The compos-
ite can be treated for most purposes like a single closed object, with the size and shape of its bounding box.
Here is an example. The program fragment

A: [
circle;
line up 1 at last circle .n;
line down 1 at last circle .s;
line right 1 at last circle .e;
line left 1 at last circle .w;
box dashed with .nw at last circle .se + (0.2, -0.2);
Caption: center of last box;

]

yields the block in figure 11-1, which we show both with and without its attachment points. The block’s lo-
cation becomes the value of A.

.c

.n .ne

.e

.se.s.sw

.w

.nw

Figure 11-1: A sample composite object

To refer to one of the composite’s attachment points, you can say (for example) A .s. For purposes of ob-
ject naming, composites are a class. You could write last [] .s as an equivalent reference, usable anywhere

-19-

a location is needed. This construction is very important for putting together large, multi-part diagrams.

Blocks are also a variable-scoping mechanism, like a groff (1) environment. All variable assignments
done inside a block are undone at the end of it. To get at values within a block, write a name of the block
followed by a dot, followed by the label you want. For example, we could refer the center of the box in the
above composite as last [] .Caption or A.Caption.

This kind of reference to a label can be used in any way any other location can be. For example, if
we added "Hi!" at A.Caption the result would look like this:

Hi!

Figure 11-2: Adding a caption using interior labeling

You can also use interior labels in either part of a with modifier. This means that the example com-
posite could be placed relative to its caption box by a command containing with A.Caption at.

Note that both width and height of the block composite object are always positive:

box wid -0.5 ht 0.5; box wid 0.75 ht 0.75 [box wid -0.5 ht 0.5]; box wid 0.75 ht 0.75

Figure 11-3: Composite block objects always have positive width and height

Blocks may be nested. This means you can use block attachment points to build up complex dia-
grams hierarchically, from the inside out. Note that last and the other sequential naming mechanisms don’t
look inside blocks, so if you have a program that looks like

.PS
P: [box "foo"; ellipse "bar"];
Q: [

[box "baz"; ellipse "quxx"]
"random text";

]
arrow from 2nd last [];
.PE

-20-

the arrow in the last line is attached to object P, not object Q.

In DWB pic, only references one level deep into enclosed blocks were permitted. GNU gpic re-
moves this restriction.

The combination of block variable scoping, assignability of labels and the macro facility that we’ll
describe later on can be used to simulate functions with local variables (just wrap the macro body in block
braces).

12. Style Variables

There are a number of global style variables in pic that can be used to change its overall behavior.
We’v e mentioned several of them in previous sections. They’re all described here. For each variable, the
default is given.

Style Variable Default What It Does

boxht 0.5 Default height of a box
boxwid 0.75 Default width of a box
lineht 0.5 Default length of vertical line
linewid 0.75 Default length of horizontal line
linethick -1 Default line thickness
arcrad 0.25 Default radius of an arc
circlerad 0.25 Default radius of a circle
ellipseht 0.5 Default height of an ellipse
ellipsewid 0.75 Default width of an ellipse
moveht 0.5 Default length of vertical move
movewid 0.75 Default length of horizontal move
textht 0 Default height of box enclosing a text object
textwid 0 Default width of box enclosing a text object
arrowht 0.1 Length of arrowhead along shaft
arrowwid 0.05 Width of rear of arrowhead
arrowhead 1 Enable/disable arrowhead filling
dashwid 0.05 Interval for dashed lines
maxpswid 8.5 Maximum width of picture
maxpsht 11 Maximum height of picture
scale 1 Unit scale factor
fillval 0.5 Default fill value

Any of these variables can be set with a simple assignment statement. For example:

Figure 12-1: boxht=1; boxwid=0.3; movewid=0.2; box; move; box; move; box; move; box;

In GNU pic, setting the scale variable re-scales all size-related state variables so that their values re-
main equivalent in the new units.

The command reset resets all style variables to their defaults. You can give it a list of variable names
as arguments (optionally separated by commas), in which case it resets only those.

State variables retain their values across pictures until reset.

-21-

13. Expressions, Variables, and Assignment

A number is a valid expression, of course (all numbers are stored internally as floating-point). Deci-
mal-point notation is acceptable; in GNU gpic, scientific notation in C’s ‘e’ format (like 5e-2) is accepted.

Anywhere a number is expected, the language also accepts a variable. Variables may be the built-in
style variable described in the last section, or new variables created by assignment.

DWB pic supports only the ordinary assignment via =, which defines the variable (on the left side of
the equal sign) in the current block if it is not already defined there, and then changes the value (on the right
side) in the current block. The variable is not visible outside of the block. This is similar to the C program-
ming language where a variable within a block shadows a variable with the same name outside of the block.

GNU gpic supports an alternate form of assignment using :=. The variable must already be defined,
and the value is assigned to that variable without creating a variable local to the current block. For exam-
ple, this

x=5
y=5
[
x:=3
y=3

]
print x " " y

prints 3 5.

You can use the height, width, radius, and x and y coordinates of any object or corner in expressions.
If A is an object label or name, all the following are valid:

A.x # x coordinate of the center of A
A.ne.y # y coordinate of the northeast corner of A
A.wid # the width of A
A.ht # and its height
2nd last circle.rad # the radius of the 2nd last circle

Note the second expression, showing how to extract a corner coordinate.

Basic arithmetic resembling those of C operators are available; +, *, -, /, and %. So is ˆ for exponen-
tiation. Grouping is permitted in the usual way using parentheses. GNU gpic allows logical operators to
appear in expressions; ! (logical negation, not factorial), &&, | |, ==, !=, >=, <=, <, >.

Various built-in functions are supported: sin(x), cos(x), log(x), exp(x), sqrt(x), max(x,y), atan2(x,y),
min(x,y), int(x), rand(), and srand(). Both exp and log are base 10; int does integer truncation; rand() re-
turns a random number in [0-1), and srand() sets the seed for a new sequence of pseudo-random numbers
to be returned by rand() (srand() is a GNU extension).

GNU gpic also documents a one-argument form or rand, rand(x), which returns a random number
between 1 and x, but this is deprecated and may be removed in a future version.

The function sprintf() behaves like a C sprintf (3) function that only takes %, %e, %f, and %g format
strings.

14. Macros

You can define macros in pic, with up to 32 arguments (up to 16 on EBCDIC platforms). This is use-
ful for diagrams with repetitive parts. In conjunction with the scope rules for block composites, it effec-
tively gives you the ability to write functions.

The syntax is

define name { replacement text }

-22-

This defines name as a macro to be replaced by the replacement text (not including the braces). The macro
may be called as

name(arg1, arg2, . . . argn)

The arguments (if any) are substituted for tokens $1, $2 . . . $n appearing in the replacement text.

As an example of macro use, consider this:

.PS
Plot a single jumper in a box, $1 is the on-off state.
define jumper { [

shrinkfactor = 0.8;
Outer: box invis wid 0.45 ht 1;

Count on end] to reset these
boxwid = Outer.wid * shrinkfactor / 2;
boxht = Outer.ht * shrinkfactor / 2;

box fill (!$1) with .s at center of Outer;
box fill ($1) with .n at center of Outer;

] }

Plot a block of six jumpers.
define jumperblock {

jumper($1);
jumper($2);
jumper($3);
jumper($4);
jumper($5);
jumper($6);

jwidth = last [].Outer.wid;
jheight = last [].Outer.ht;

box with .nw at 6th last [].nw wid 6*jwidth ht jheight;

Use {} to avoid changing position from last box draw.
This is necessary so move in any direction works as expected
{"Jumpers in state $1$2$3$4$5$6" at last box .s + (0,-0.2);}

}

Sample macro invocations.
jumperblock(1,1,0,0,1,0);
move;
jumperblock(1,0,1,0,1,1);
.PE

It yields the following:

-23-

Jumpers in state 110010 Jumpers in state 101011

Figure 14-1: Sample use of a macro

This macro example illustrates how you can combine [], brace grouping, and variable assignment to write
true functions.

One detail the example above does not illustrate is the fact that macro argument parsing is not token-
oriented. If you call jumper(1), the value of $1 is " 1 ". You could even call jumper(big string) to give
$1 the value "big string".

If you want to pass in a coordinate pair, you can avoid getting tripped up by the comma by wrapping
the pair in parentheses.

Macros persist through pictures. To undefine a macro, say undef name; for example,

undef jumper
undef jumperblock

would undefine the two macros in the jumper block example.

15. Import/Export Commands

Commands that import or export data between pic and its environment are described here.

15.1. File and Table Insertion

The statement

copy filename

inserts the contents of filename in the pic input stream. Any .PS/.PE pair in the file is ignored. You can
use this to include pre-generated images.

A variant of this statement replicates the copy thru feature of grap(1). The call

copy filename thru macro

calls macro (which may be either a name or replacement text) on the arguments obtained by breaking each
line of the file into blank-separated fields. The macro may have up to 9 arguments. The replacement text
may be delimited by braces or by a pair of instances of any character not appearing in the rest of the text.

If you write

copy thru macro

omitting the filename, lines to be parsed are taken from the input source up to the next .PE.

In either of the last two copy commands, GNU gpic permits a trailing ‘until word’ clause to be
added which terminates the copy when the first word matches the argument (the default behavior is there-
fore equivalent to until .PE).

Accordingly, the command

-24-

.PS
copy thru % circle at ($1,$2) % until "END"
1 2
3 4
5 6
END
box
.PE

is equivalent to

.PS
circle at (1,2)
circle at (3,4)
circle at (5,6)
box
.PE

15.2. Debug Messages

The command print accepts any number of arguments, concatenates their output forms, and writes
the result to standard error. Each argument must be an expression, a position, or a text string.

15.3. Escape to Post-Processor

If you write

command arg . . .

pic concatenates the arguments and pass them through as a line to troff or TEX. Each arg must be an ex-
pression, a position, or text. This has a similar effect to a line beginning with . or \ , but allows the values
of variables to be passed through.

For example,

.PS
x = 14
command ".ds string x is " x "."
.PE
*[string]

prints

x is 14.

15.4. Executing Shell Commands

The command

sh { anything. . . }

macro-expands the text in braces, then executes it as a shell command. This could be used to generate im-
ages or data tables for later inclusion. The delimiters shown as {} here may also be two copies of any one
character not present in the shell command text. In either case, the body may contain balanced {} pairs.
Strings in the body may contain balanced or unbalanced braces in any case.

16. Control-flow constructs

The pic language provides conditionals and looping. For example,

-25-

pi = atan2(0,-1);
for i = 0 to 2 * pi by 0.1 do {

"-" at (i/2, 0);
"." at (i/2, sin(i)/2);
":" at (i/2, cos(i)/2);

}

which yields this:

-.

:

-.

:

-
.

:

-
.

:

-

.

:

-

.

:

-

.
:

-

.:

-

.:

-

.
:

-

.
:

-

.

:

-

.

:

-

.

:
-

.

:
-

.

:-

.

:-

.

:-

.

:
-

.

:
-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-
.

:

-
.

:

-
.

:

-.

:

-.

:

-
.

:

-
.

:

-

.

:

-

.

:

-

.
:

-

.
:

-

.:

-

.:

-

.
:

-

.

:

-

.

:

-

.

:
-

.

:
-

.

:-

.

:-

.

:-

.

:
-

.

:
-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-
.

:

-
.

:

-.

:

Figure 16-1: Plotting with a for loop

The syntax of the for statement is:

for variable = expr1 to expr2 [by [*]expr3] do X body X

The semantics are as follows: Set variable to expr1. While the value of variable is less than or equal to
expr2, do body and increment variable by expr3; if by is not given, increment variable by 1. If expr3 is
prefixed by * then variable is multiplied instead by expr3. The value of expr3 can be negative for the addi-
tive case; variable is then tested whether it is greater than or equal to expr2. For the multiplicative case,
expr3 must be greater than zero. If the constraints aren’t met, the loop isn’t executed. X can be any charac-
ter not occurring in body; or the two Xs may be paired braces (as in the sh command).

The syntax of the if statement is as follows:

if expr then X if-true X [else Y if-false Y]

Its semantics are as follows: Evaluate expr; if it is non-zero then do if-true, otherwise do if-false. X can be
any character not occurring in if-true. Y can be any character not occurring in if-false.

Eithe or both of the X or Y pairs may instead be balanced pairs of braces ({ and }) as in the sh com-
mand. In either case, the if-true may contain balanced pairs of braces. None of these delimiters are seen
inside strings.

All the usual relational operators my be used in conditional expressions; ! (logical negation, not fac-
torial), &&, | |, ==, !=, >=, <=, <, >.

String comparison is also supported using == and !=. String comparisons may need to be parenthe-
sized to avoid syntactic ambiguities.

17. Interface To [gt]roff

The output of pic is [gt]roff drawing commands. The GNU gpic(1) command warns that it relies on
drawing extensions present in groff (1) that are not present in troff (1).

17.1. Scaling Arguments

The DWB pic(1) program accepts one or two arguments to .PS, which is interpreted as a width and
height in inches to which the results of pic(1) should be scaled (width and height scale independently). If
there is only one argument, it is interpreted as a width to scale the picture to, and height is scaled by the
same proportion.

GNU gpic is less general; it accepts a single width to scale to, or a zero width and a maximum height
to scale to. With two non-zero arguments, it scales to the maximum height.

-26-

17.2. How Scaling is Handled

When pic processes a picture description on input, it passes .PS and .PE through to the postproces-
sor. The .PS gets decorated with two numeric arguments which are the X and Y dimensions of the picture
in inches. The post-processor can use these to reserve space for the picture and center it.

The GNU incarnation of the ms macro package, for example, includes the following definitions:

.de PS

.br

.sp \\n[DD]u

.ie \\n[.$]<2 .@error bad arguments to PS (not preprocessed with pic?)

.el \{\

. ds@need (u;\\$1)+1v

. in +(u;\\n[.l]-\\n[.i]-\\$2/2>?0)

.\}

..

.de PE

.par@reset

.sp \\n[DD]u+.5m

..

Equivalent definition is supplied by GNU pic(1) if you use the −mpic option; this should make it usable
with macro pages other than ms(1).

If .PF is used instead of .PE, the troff position is restored to what it was at the picture start
(Kernighan notes that the F stands for “flyback”).

The invocation

.PS < file

causes the contents of file to replace the .PS line. This feature is deprecated; use ‘copy file’ instead).

17.3. PIC and [gt]roff commands

By default, input lines that begin with a period are passed to the postprocessor, embedded at the cor-
responding point in the output. Messing with horizontal or vertical spacing is an obvious recipe for bugs,
but point size and font changes are usually safe.

Point sizes and font changes are also safe within text strings, as long as they are undone before the
end of string.

The state of [gt]roff’s fill mode is preserved across pictures.

17.4. PIC and EQN

The Kernighan paper notes that there is a subtle problem with complicated equations inside pic pic-
tures; they come out wrong if eqn(1) has to leave extra vertical space for the equation. If your equation in-
volves more than subscripts and superscripts, you must add to the beginning of each equation the extra in-
formation space 0. He giv es the following example:

arrow
box "$space 0 {H(omega)} over {1 - H(omega)}$"
arrow

-27-

H(ω)

1 − H(ω)

Figure 17-1: Equations within pictures

17.5. Absolute Positioning of Pictures

A pic picture is positioned vertically by troff at the current position. The topmost position possible
on a page is not the paper edge but a position which is one baseline lower so that the first row of glyphs is
visible. To make a picture really start at the paper edge you have to make the baseline-to-baseline distance
zero, this is, you must set the vertical spacing to 0 (using .vs) before starting the picture.

18. Interface to TeX

TEX mode is enabled by the −t option. In TEX mode, pic defines a vbox called \graph for each pic-
ture; the name can be changed with the pseudo-variable figname (which is actually a specially parsed com-
mand). You must yourself print that vbox using, for example, the command

\centerline{\box\graph}

Actually, since the vbox has a height of zero (it is defined with \vtop) this produces slightly more vertical
space above the picture than below it;

\centerline{\raise 1em\box\graph}

would avoid this.

To make the vbox having a positive height and a depth of zero (as used e.g. by LATEX’s
graphics.sty), define the following macro in your document:

\def\gpicbox#1{%
\vbox{\unvbox\csname #1\endcsname\kern 0pt}}

Now you can simply say \gpicbox{graph} instead of \box\graph.

You must use a TEX driver that supports the tpic specials, version 2.

Lines beginning with \ are passed through transparently; a % is added to the end of the line to avoid
unwanted spaces. You can safely use this feature to change fonts or to change the value of \baselineskip.
Anything else may well produce undesirable results; use at your own risk. Lines beginning with a period
are not given any special treatment.

The TEX mode of pic(1) does not translate troff font and size changes included in text strings!

Here an example how to use figname.

.PS
figname = foo;
...
.PE

.PS
figname = bar;
...
.PE

\centerline{\box\foo \hss \box\bar}

Use this feature sparsingly and only if really needed: A different name means a new box register in TEX,
and the maximum number of box registers is only 256. Also be careful not to use a predefined TEX or

-28-

LATEX macro name as an argument to figname since this inevitably causes an error.

19. Obsolete Commands

GNU gpic(1) has a command

plot expr ["text"]

This is a text object which is constructed by using text as a format string for sprintf with an argument of
expr. If text is omitted a format string of "%g" is used. Attributes can be specified in the same way as for
a normal text object. Be very careful that you specify an appropriate format string; pic does only very lim-
ited checking of the string. This is deprecated in favour of sprintf.

20. Some Larger Examples

Here are a few larger examples, with complete source code. One of our earlier examples is generated
in an instructive way using a for loop:

.PS
Draw a demonstration up left arrow with grid box overlay
define gridarrow
{

move right 0.1
[

{arrow up left $1;}
box wid 0.5 ht 0.5 dotted with .nw at last arrow .end;
for i = 2 to ($1 / 0.5) do
{

box wid 0.5 ht 0.5 dotted with .sw at last box .se;
}
move down from last arrow .center;
[

sprintf("\fBarrow up left %g\fP", $1)
]

]
move right 0.1 from last [] .e;

}
gridarrow(0.5);
gridarrow(1);
gridarrow(1.5);
gridarrow(2);
undef gridarrow
.PE

arrow up left 0.5 arrow up left 1 arrow up left 1.5 arrow up left 2

Figure 20-1: Diagonal arrows (dotted boxes show the implied 0.5-inch grid)

Here’s an example concocted to demonstrate layout of a large, multiple-part pattern:

-29-

.PS
define filter {box ht 0.25 rad 0.125}
lineht = 0.25;
Top: [

right;
box "\fBms\fR" "sources";
move;
box "\fBHTML\fR" "sources";
move;
box "\fBlinuxdoc-sgml\fP" "sources" wid 1.5;
move;
box "\fBTexinfo\fP" "sources";

line down from 1st box .s lineht;
A: line down;
line down from 2nd box .s; filter "\fBhtml2ms\fP";
B: line down;
line down from 3rd box .s; filter "\fBformat\fP";
C: line down;
line down from 4th box .s; filter "\fBtexi2roff\fP";
D: line down;

]
move down 1 from last [] .s;
Anchor: box wid 1 ht 0.75 "\fBms\fR" "intermediate" "form";
arrow from Top.A.end to Anchor.nw;
arrow from Top.B.end to 1/3 of the way between Anchor.nw and Anchor.ne;
arrow from Top.C.end to 2/3 of the way between Anchor.nw and Anchor.ne;
arrow from Top.D.end to Anchor.ne
{

PostScript column
move to Anchor .sw;
line down left then down ->;
filter "\fBpic\fP";
arrow;
filter "\fBeqn\fP";
arrow;
filter "\fBtbl\fP";
arrow;
filter "\fBgroff\fP";
arrow;
box "PostScript";

HTML column
move to Anchor .se;
line down right then down ->;
A: filter dotted "\fBpic2img\fP";
arrow;
B: filter dotted "\fBeqn2html\fP";
arrow;
C: filter dotted "\fBtbl2html\fP";
arrow;
filter "\fBms2html\fP";
arrow;
box "HTML";

Nonexistence caption
box dashed wid 1 at B + (2,0) "These tools" "don’t yet exist";
line chop 0 chop 0.1 dashed from last box .nw to A.e ->;
line chop 0 chop 0.1 dashed from last box .w to B.e ->;

-30-

line chop 0 chop 0.1 dashed from last box .sw to C.e ->;
}
.PE

ms
sources

HTML
sources

linuxdoc-sgml
sources

Texinfo
sources

html2ms format texi2roff

ms
intermediate

form

pic

eqn

tbl

groff

PostScript

pic2img

eqn2html

tbl2html

ms2html

HTML

These tools
don’t yet exist

Figure 20-2: Hypothetical production flow for dual-mode publishing

-31-

Master
1

Slave

Figure 20-3: Three-dimensional Boxes

Here the source code for figure 20-3:

.PS
a three-dimensional block
#
tblock(<width>, <height>, <text>)

define tblock { [
box ht $2 wid $1 \

color "gold" outlined "black" \
xslanted 0 yslanted 0 \
$3;

box ht .1 wid $1 \
color "yellow" outlined "black" \
xslanted .1 yslanted 0 \
with .sw at last box .nw;

box ht $2 wid .1 \
color "goldenrod" outlined "black" \
xslanted 0 yslanted .1 \
with .nw at 2nd last box .ne;

] }

tblock(1, .5, "Master" "1");
move -.1
tblock(.5, 1, "Slave");
.PE

21. PIC Reference

This is an annotated grammar of pic.

21.1. Lexical Items

In general, pic is a free-format, token-oriented language that ignores whitespace outside strings. But
certain lines and contructs are specially interpreted at the lexical level:

A comment begins with # and continues to \n (comments may also follow text in a line). A line be-
ginning with a period or backslash may be interpreted as text to be passed through to the post-processor, de-
pending on command-line options. An end-of-line backslash is interpreted as a request to continue the line;
the backslash and following newline are ignored.

Here are the grammar terminals:

INT A positive integer.

NUMBER

A floating point numeric constant. May contain a decimal point or be expressed in scientific
notation in the style of printf (3)’s %e escape. A trailing ‘i’ or ‘I’ (indicating the unit ‘inch’) is

-32-

ignored.

TEXT

A string enclosed in double quotes. A double quote within TEXT must be preceded by a back-
slash. Instead of TEXT you can use

sprintf (TEXT [, <expr> ...])

except after the ‘until’ and ‘last’ keywords, and after all ordinal keywords (‘th’ and friends).

VARIABLE

A string starting with a character from the set [a-z], optionally followed by one or more charac-
ters of the set [a-zA-Z0-9_]. (Values of variables are preserved across pictures.)

LABEL

A string starting with a character from the set [A-Z], optionally followed by one or more char-
acters of the set [a-zA-Z0-9_].

COMMAND-LINE

A line starting with a command character (‘.’ in groff mode, ‘\’ in TEX mode).

BALANCED-TEXT

A string either enclosed by ‘{’ and ‘}’ or with X and X, where X doesn’t occur in the string.

BALANCED-BODY

Delimiters as in BALANCED-TEXT; the body is interpreted as ‘〈command〉. . .’.

FILENAME

The name of a file. This has the same semantics as TEXT.

MACRONAME

Either VARIABLE or LABEL.

21.2. Semi-Formal Grammar

Tokens not enclosed in 〈 〉 are literals, except:

1. \n is a newline.

2. Three dots is a suffix meaning ‘replace with 0 or more repetitions of the preceding element(s).

3. An enclosure in square brackets has its usual meaning of ‘this clause is optional’.

4. Square-bracket-enclosed portions within tokens are optional. Thus, ‘h[eigh] t’ matches either
‘height’ or ‘ht’.

If one of these special tokens has to be referred to literally, it is surrounded with single quotes.

The top-level pic object is a picture.

<picture> ::=
.PS [NUMBER [NUMBER]]\n
<statement> ...
.PE \n

The arguments, if present, represent the width and height of the picture, causing pic to attempt to
scale it to the given dimensions in inches. In no case, however, the X and Y dimensions of the picture ex-
ceed the values of the style variables maxpswid and maxpsheight (which default to the normal 8.5i by 11i
page size).

If the ending ‘.PE’ is replaced by ‘.PF’, the page vertical position is restored to its value at the time
‘.PS’ was encountered. Another alternate form of invocation is ‘.PS <FILENAME’, which replaces the ‘.PS’
line with a file to be interpreted by pic (but this feature is deprecated).

The ‘.PS’, ‘.PE’, and ‘.PF’ macros to perform centering and scaling are normally supplied by the
post-processor.

-33-

In the following, either ‘|’ or a new line starts an alternative.

<statement> ::=
<command> ;
<command> \n

<command> ::=
<primitive> [<attribute>]
LABEL : [;] <command>
LABEL : [;] <command> [<position>]
{ <command> ... }
VARIABLE [:] = <any-expr>
figname = MACRONAME
up | down | left | right
COMMAND-LINE
command <print-arg> ...
print <print-arg> ...
sh BALANCED-TEXT
copy FILENAME
copy [FILENAME] thru MACRONAME [until TEXT]
copy [FILENAME] thru BALANCED-BODY [until TEXT]
for VARIABLE = <expr> to <expr> [by [*] <expr>] do BALANCED-BODY
if <any-expr> then BALANCED-BODY [else BALANCED-BODY]
reset [VARIABLE [[,] VARIABLE ...]]

<print-arg> ::=
TEXT
<expr>
<position>

The current position and direction are saved on entry to a ‘{ . . . }’ construction and restored on exit
from it.

Note that in ‘if’ constructions, newlines can only occur in BALANCED-BODY. This means that

if
{ ... }
else
{ ... }

fails. You have to use the braces on the same line as the keywords:

if {
...
} else {
...
}

This restriction doesn’t hold for the body after the ‘do’ in a ‘for’ construction.

At the beginning of each picture, ‘figname’ is reset to the vbox name ‘graph’; this command has only
a meaning in TEX mode. While the grammar rules allow digits and the underscore in the value of ‘fig-
name’, TEX normally accepts uppercase and lowercase letters only as box names (you have to use
‘\csname’ if you really need to circumvent this limitation).

-34-

<any-expr> ::=
<expr>
<text-expr>
<any-expr> <logical-op> <any-expr>
! <any-expr>

<logical-op> ::=
== | != | && | ’||’

<text-expr> ::=
TEXT == TEXT
TEXT != TEXT

Logical operators are handled specially by pic since they can deal with text strings also. pic uses
strcmp(3) to test for equality of strings; an empty string is considered as ‘false’ for ‘&&’ and ‘| |’.

<primitive> ::=
box # closed object — rectangle
circle # closed object — circle
ellipse # closed object — ellipse
arc # open object — quarter-circle
line # open object — line
arrow # open object — line with arrowhead
spline # open object — spline curve
move
TEXT TEXT ... # text within invisible box
plot <expr> TEXT # formatted text
’[’ <command> ... ’]’

Drawn objects within ‘[. . .]’ are treated as a single composite object with a rectangular shape (that
of the bounding box of all the elements). Variable and label assignments within a block are local to the
block. Current direction of motion is restored to the value at start of block upon exit. Position is not re-
stored (unlike ‘{ }’); instead, the current position becomes the exit position for the current direction on the
block’s bounding box.

-35-

<attribute> ::=
h[eigh]t <expr> # set height of closed figure
wid[th] <expr> # set width of closed figure
rad[ius] <expr> # set radius of circle/arc
diam[eter] <expr> # set diameter of circle/arc
up [<expr>] # move up
down [<expr>] # move down
left [<expr>] # move left
right [<expr>] # move right
from <position> # set from position of open figure
to <position> # set to position of open figure
at <position> # set center of open figure
with <path> # fix corner/named point at specified location
with <position> # fix position of object at specified location
by <expr-pair> # set object’s attachment point
then # sequential segment composition
dotted [<expr>] # set dotted line style
dashed [<expr>] # set dashed line style
thick[ness] <expr> # set thickness of lines
chop [<expr>] # chop end(s) of segment
’->’ | ’<-’ | ’<->’ # decorate with arrows
invis[ible] # make primitive invisible
solid # make closed figure solid
fill[ed] [<expr>] # set fill density for figure
xscaled <expr> # slant box into x direction
yscaled <expr> # slant box into y direction
colo[u]r[ed] TEXT # set fill and outline color for figure
outline[d] TEXT # set outline color for figure
shaded TEXT # set fill color for figure
same # copy size of previous object
cw | ccw # set orientation of curves
ljust | rjust # adjust text horizontally
above | below # adjust text vertically
aligned # align parallel to object
TEXT TEXT ... # text within object
<expr> # motion in the current direction

Missing attributes are supplied from defaults; inappropriate ones are silently ignored. For lines,
splines, and arcs, height and width refer to arrowhead size.

The ‘at’ primitive sets the center of the current object. The ‘with’ attribute fixes the specified feature
of the given object to a specified location. (Note that ‘with’ is incorrectly described in the Kernighan pa-
per.)

The ‘by’ primitive is not documented in the tutorial portion of the Kernighan paper, and should prob-
ably be considered unreliable.

The primitive ‘arrow’ is a synonym for ‘line ->’.

Te xt is normally an attribute of some object, in which case successive strings are vertically stacked
and centered on the object’s center by default. Standalone text is treated as though placed in an invisible
box.

A text item consists of a string or sprintf-expression, optionally followed by positioning information.
Te xt (or strings specified with ‘sprintf’) may contain font changes, size changes, and local motions, pro-
vided those changes are undone before the end of the current item. Te xt may also contain \-escapes denot-
ing special characters. The base font and specific set of escapes supported is implementation dependent,
but supported escapes always include the following:

-36-

\fR, \f1
Set Roman style (the default)

\fI, \f2
Set Italic style

\fB, \f3
Set Bold style

\fP
Revert to previous style; only works one level deep, does not stack.

Color names are dependent on the pic implementation, but in all modern versions color names recog-
nized by the X window system are supported.

A position is an (x,y) coordinate pair. There are lots of different ways to specify positions:

<position> ::=
<position-not-place>
<place>
(<position>)

<position-not-place> ::=
<expr-pair>
<position> + <expr-pair>
<position> - <expr-pair>
(<position> , <position>)
<expr> [of the way] between <position> and <position>
<expr> ’<’ <position> , <position> ’>’

<expr-pair> ::=
<expr> , <expr>
(expr-pair)

<place> ::=
<label>
<label> <corner>
<corner> [of] <label>
Here

<label> ::=
LABEL [. LABEL ...]
<nth-primitive>

<corner> ::=
.n | .e | .w | .s
.ne | .se | .nw | .sw
.c[enter] | .start | .end
.t[op] | .b[ot[tom]] | .l[eft] | .r[ight]
left | right | <top-of> | <bottom-of>
<north-of> | <south-of> | <east-of> | <west-of>
<center-of> | <start-of> | <end-of>
upper left | lower left | upper right | lower right

<xxx-of> ::=
xxx # followed by ‘of’

-37-

<nth-primitive> ::=
<ordinal> <object-type>
[<ordinal>] last <object-type>

<ordinal> ::=
INT th
INT st | INT nd | INT rd
‘ <any-expr> ’th

<object-type> ::=
box
circle
ellipse
arc
line
arrow
spline
’[]’
TEXT

As Kernighan notes, “since barbarisms like 1th and 3th are barbaric, synonyms like 1st and 3rd are
accepted as well.” Objects of a given type are numbered from 1 upwards in order of declaration; the last
modifier counts backwards.

The “’th” form (which allows you to select a previous object with an expression, as opposed to a nu-
meric literal) is not documented in DWB’s pic(1).

The 〈xxx-of 〉 rule is special: The lexical parser checks whether xxx is followed by the token ‘of’
without eliminating it so that the grammar parser can still see ‘of’. Valid examples of specifying a place
with corner and label are thus

A .n
.n of A
.n A
north of A

while

north A
A north

both cause a syntax error. (DWB pic also allows the weird form ‘A north of’.)

Here the special rules for the ‘with’ keyword using a path:

<path> ::=
<relative-path>
(<relative-path> , <relative-path>)

<relative-path> ::=
<corner>
. LABEL [. LABEL ...] [<corner>]

The following style variables control output:

Style Variable Default What It Does

boxht 0.5 Default height of a box
boxwid 0.75 Default width of a box

-38-

Style Variable Default What It Does

lineht 0.5 Default length of vertical line
linewid 0.75 Default length of horizontal line
arcrad 0.25 Default radius of an arc
circlerad 0.25 Default radius of a circle
ellipseht 0.5 Default height of an ellipse
ellipsewid 0.75 Default width of an ellipse
moveht 0.5 Default length of vertical move
movewid 0.75 Default length of horizontal move
textht 0 Default height of box enclosing a text object
textwid 0 Default width of box enclosing a text object
arrowht 0.1 Length of arrowhead along shaft
arrowwid 0.05 Width of rear of arrowhead
arrowhead 1 Enable/disable arrowhead filling
dashwid 0.05 Interval for dashed lines
maxpswid 8.5 Maximum width of picture
maxpsht 11 Maximum height of picture
scale 1 Unit scale factor
fillval 0.5 Default fill value

Any of these can be set by assignment, or reset using the reset statement. Style variables assigned within
‘[]’ blocks are restored to their beginning-of-block value on exit; top-level assignments persist across pic-
tures. Dimensions are divided by scale on output.

All pic expressions are evaluated in floating point; units are always inches (a trailing ‘i’ or ‘I’ is ig-
nored). Expressions have the following simple grammar, with semantics very similar to C expressions:

<expr> ::=
VARIABLE
NUMBER
<place> <place-attribute>
<expr> <op> <expr>
- <expr>
(<any-expr>)
! <expr>
<func1> (<any-expr>)
<func2> (<any-expr> , <any-expr>)
rand ()

<place-attribute>
.x | .y | .h[eigh]t | .wid[th] | .rad

<op> ::=
+ | - | * | / | % | ˆ | ’<’ | ’>’ | ’<=’ | ’>=’

<func1> ::=
sin | cos | log | exp | sqrt | int | rand | srand

<func2> ::=
atan2 | max | min

Both exp and log are base 10; int does integer truncation; and rand() returns a random number in [0-1).

There are define and undef statements which are not part of the grammar (they behave as pre-proces-
sor macros to the language). These may be used to define pseudo-functions.

-39-

define name { replacement-text }

This defines name as a macro to be replaced by the replacement text (not including the braces). The macro
may be called as

name(arg1, arg2, . . ., argn)

The arguments (if any) are substituted for tokens $1, $2 . . . $n appearing in the replacement text. To unde-
fine a macro, say undef name, specifying the name to be undefined.

22. History and Acknowledgements

Original pic was written to go with Joseph Ossanna’s original troff (1) by Brian Kernighan, and later
re-written by Kernighan with substantial enhancements (apparently as part of the evolution of troff (1) into
ditroff (1) to generate device-independent output).

The language had been inspired by some earlier graphics languages including ideal and grap.
Kernighan credits Chris van Wyk (the designer of ideal) with many of the ideas that went into pic.

The pic language was originally described by Brian Kernighan in Bell Labs Computing Science
Technical Report #116 (you can obtain a PostScript copy of the revised version, [1], by sending a mail mes-
sage to netlib@research.att.com with a body of ‘send 116 from research/cstr’). There have been two revi-
sions, in 1984 and 1991.

The document you are reading effectively subsumes Kernighan’s description; it was written to fill in
lacunæ in the exposition and integrate in descriptions of the GNU gpic(1) and pic2plot(1) features.

The GNU gpic implementation was written by James Clark 〈 jjc@jclark.com〉.
The GNU pic2plot implementation is based on James Clark’s parser code and maintained by Robert

Maier, principal author of plotutils.

23. Bibliography

1. Kernighan, B. W. PIC — A Graphics Language for Typesetting (Revised User Manual). Bell
Labs Computing Science Technical Report #116, December 1991.

2. Van Wyk, C. J. A high-level language for specifying pictures. ACM Transactions On Graphics 1,2
(1982) 163-182.

